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Aim To predict the presence of breast cancer by using a 
pattern recognition network with optimal features based 
on routine blood analysis parameters and anthropomet-
ric data.

Methods Sensitivity, specificity, accuracy, Matthews cor-
relation coefficient (MCC), and Fowlkes-Mallows (FM) in-
dex of each model were calculated. Glucose, insulin, age, 
homeostatic model assessment, leptin, body mass index 
(BMI), resistin, adiponectin, and monocyte chemoattrac-
tant protein-1 were used as predictors.

Results Pattern recognition network distinguished pa-
tients with breast cancer disease from healthy people. The 
best classification performance was obtained by using BMI, 
age, glucose, resistin, and adiponectin, and in a model with 
two hidden layers with 11 and 100 neurons in the neural 
network. The accuracy, sensitivity, specificty, FM index, and 
MCC values of the best model were 94.1%, 100%, 88.9%, 
94.3%, and 88.9%, respectively.

Conclusion Breast cancer diagnosis was succesfully pre-
dicted using only five features. A model using a pattern 
recognition network with optimal feature subsets pro-
posed in this study could be used to improve the early de-
tection of breast cancer.

Received: November 24, 2020

Accepted: May 5, 2021

Correspondence to: 
Serdar Gündoğdu 
Department of Computer 
Technologies 
Bergama Vocational School 
Dokuz Eylül University 
35700 Bergama, Izmir, Turkey 
serdar.gundogdu@deu.edu.tr

Serdar Gündoğdu
Department of Computer 
Technologies, Dokuz Eylül 
University, Izmir, Turkey

Improving breast cancer 
prediction using a pattern 
recognition network with 
optimal feature subsets

RESEARCH ARTICLE 

 

Croat Med J. 2021;62:ap0006 

https://doi.org/10.3325/cmj.2021.62.ap0006

mailto: serdar.gundogdu@deu.edu.tr


437Gündoğdu: Breast cancer prediction using a pattern recognition network

www.cmj.hr

Cancer is the second leading cause of death globally, 
with 9.6 million deaths in 2018. The most common can-
cers in women are breast, lung, cervical, colorectal, and 
thyroid cancer, while men most frequently suffer from 
lung, liver, stomach, colorectal, and prostate cancer (1). 
Survival rates of breast cancer patients worldwide vary 
greatly. The low survival in underdeveloped countries can 
mainly be explained by a lack of early detection systems 
equipped with advanced technologies (2). A lower risk of 
dying from breast cancer is directly related to an earlier 
treatment (3). Therefore, an early diagnosis, necessary to 
increase the survival rate of breast cancer patients, con-
tinues to be the most significant component of breast 
cancer control (4).

Several biomarker candidates for breast cancer have been 
reported in the literature (5), as well as different biomarker 
combinations (6-10). A combination of BMI, leptin levels, 
leptin/adiponectin ratio, and CA 15-3 levels as biomark-
ers for breast cancer has shown high reliability (9). Rou-
tine blood analyses, leptin, adiponectin, especially insulin, 
glucose, resistin, homeostatic model assessment (HOMA), 
monocyte chemoattractant protein-1 (MCP-1), age, and 
body mass index (BMI) data can also be used to diagnose 
breast cancer (10).

Data-mining classification methods can aid in the diagnos-
tic process due to their accuracy and rapidity (11). Hwa et 
al (6) have reported 85% predictive sensitivity for the clas-
sification of breast cancer using a software tool with a lo-

gistic regression model. In 2015, the relationship between 
serum irisin levels and breast cancer was analyzed using lo-
gistic regression analysis. Serum irisin levels were found to 
discriminate breast cancer patients with 91.1% specificity 
and 62.7% sensitivity (12). Patrício et al (10) used a support 
vector machine (SVM) for breast cancer prediction. The 
sensitivity and specificity values were in the range of 82%-
88% and 85%-90%, respectively. Using K-nearest neigh-
bor (KNN) and SVM algorithms, Gündoğdu (13) predicted 
breast cancer risk with 85.3% accuracy, 80.8% sensitivity, 
and 89.1% specificity.

Pattern recognition networks (PRN) are artificial neural net-
works (ANNs) that are widely used to solve the classifica-
tion problem (14), especially in the medical sciences. ANN 
models have been frequently used in cancer classifica-
tion (15) and other areas of bioinformatics (16-19). Saritas 
and Yaşar (20) classified breast cancer with an accuracy of 
86.95% when using ANN and with an accuracy of 83.54% 
when using Naïve Bayes algorithms (20).

The aim of this study was to predict the risk for breast can-
cer by using a PRN with an optimal feature set, including 
the routinely collected blood analysis parameters and an-
thropometric data. A secondary aim was to improve the 
classification performances, including accuracy, sensitiv-
ity, specificity, Matthews correlation coefficient (MCC), 
and Fowlkes Mallows (FM) index, and to create a machine 
learning-based model that can help physicians in the early 
diagnosis of breast cancer.

FiGure 1. Blood analysis parameters and anthropometric data (mean and standard deviation) of 52 healthy controls and 64 patients 
with breast cancer
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Material and MethodS

Recently, computer-generated diagnostic systems have 
been widely applied to detect different types of abnor-
malities (21). This study used breast cancer data by Patrí-
cio et al (10). The data set (in CSV format) consisted of data 
for 116 participants: 52 healthy participants and 62 breast 
cancer patients. Data on participants’ age, HOMA, leptin, 
adiponectin, BMI, insulin, glucose, resistin, and MCP-1 were 
available (Figure 1). The data set was not preprocessed.

Pattern recognition networks

Pattern recognition refers to the automated recognition 
of patterns and regularities in data. It is closely related to 
machine learning and artificial intelligence. Pattern rec-
ognition networks (patternnet) are feedforward neural 
networks (FFNN) that can be trained to classify inputs ac-
cording to target classes (22) and are widely used in clas-
sification problem solving, especially in medical sciences 
(14). FFNN was the earliest kind of ANN (23,24). Pattern-
net function returns a pattern recognition neural network 
with a hidden layer, a training function, and a performance 
function.

ANNs simulate the structure of biological neural networks, 
with basic building blocks being artificial nerve cells. The 
value of a neuron is obtained by multiplying the value of 
each neuron in the previous layer by the weights and by 
adding these multiplication operations. A neural network 
consists of one or more hidden layers, as well as of an input 
and an output layer.

In the FFNN method, the data that came from the hid-
den layer (HL) to the jth neuron and the output layer to 
the kth neuron are calculated using the Equations 1-2, re-
spectively (25).

  1

where NH(i) is the neuron in HL, I(i) is the inputs, W(i, j) is 
the vector of weights, b(i) is the bias weight, and fac is the 
activation function.

  2

where OFF (k) is the output neuron, NH(j) is the hidden neu-
ron, W(j,k) is the vector of weights, b(k) is the bias weight, 
and fac is the function.

The breast cancer data samples were randomly divided so 
that 70% was used for training, 15% for validation, and 15% 
for testing. Different three-layer feed-forward neural net-
works were developed by creating different combinations 
of input and hidden nodes (Table 1).

The model training function, activation function, and 
loss function were Levenberg-Marquardt algorithm, tan-
sigmoid, and mean square error (MSE), respectively. The 
number of iterative learning steps (epochs) was 1000. The 
validation check number in the neural network training 
was 6.

According to Du and Stephanus (26), the LMA performed 
significantly better than other training algorithms (26). 
MSE is the sum of squared distances between the ob-
served and predicted values, which is the most common-
ly used loss function (27). Ullah et al (28) used the tan-
sigmoid as the activation function. They also claimed that 
MSE might be the best parameter to find the best activa-
tion function (28).

The number of hidden layers and neurons greatly affects 
the network performance. There is no methodology for 

taBle 1. hyperparameters of the selected pattern recognition networks models*

Prn parameters M1 M2 M3 M4 M5 M5-9 M5-4

Number of variables in input layer 5  5  5   5   5   9   4
Number of the HL 1  1  1   1   2   2   2
Number of neurons in HL1 1 10 11 100  11  11  11
Number of neurons in HL2 -  -  -  - 100 100 100
Data division Rm Rm Rm Rm Rm Rm Rm
Training function LM LM LM LM LM LM LM
Activation function T-S T-S T-S T-S T-S T-S T-S
Gradient 1E-7 1E-7 1E-7 1E-7 1E-7 1E-7 1E-7
Validation checks 6  6  6   6   6   6   6
*abbreviations: M – model; rm – random; lM – levenberg-Marquardt; t-S – tan-sigmoid; hl – hidden layer.
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the selection of hidden layers or neurons so trial-and-error 
method is often used for this purpose (29). To find the best 
performance, several neural network models were created 
with different hidden layers and neurons.

This study used a deep learning toolbox (MATLAB, Math-
Works, Natick, MA, USA, release 2020a), which provides a 
framework for designing and implementing deep neural 
networks.

A confusion matrix was used to compare the models’ per-
formance by evaluating the classification accuracy. The 
matrix has four components: true negatives (TN), true 
positives (TP), false negatives (FN), and false positives (FP) 
(Table 2). Healthy and patient-labeled samples were con-
sidered as a positive class and negative class, respectively. 
TP are the samples of healthy participants correctly clas-

sified as healthy, FP are the samples of patients classified 
as healthy, TN are the samples of patients classified as dis-
eased, and FN are the samples of healthy participants clas-
sified as diseased.

Accuracy, sensitivity, specificity, MCC, and FM index from a 
confusion matrix were used to evaluate the performance 
of the classifier models. These scores were defined as 
shown in Equations 3-7.

   3

    4

    5

 6

    7

reSultS

In M1, M2, M3, M4, and M5, age, BMI, glucose, resistin, and 
adiponectin were used as input. In the models, there were 
1, 10, 11, 100, and 11-100 (two hidden layers) neurons in 
the hidden layers, respectively. Confusion matrices were 
created for each model from simulation results. The confu-

taBle 2. Confusion matrix for binary classification

target class

output class healthy Patient total

Healthy TP FP TP+FP
Patient FN TN FN+TN
Total TP+FN FP+TN
*abbreviations: tn – true negatives; tP – true positives; Fn – false 
negatives; and FP – false positives.

taBle 3. Classification performance results of the neural network with five features, according to the number of hidden layers (hl) 
and the number of neurons in the hl

Models accuracy Sensitivity Specificity Fowlkes-Mallows index Matthews correlation coefficient

M1
(HL-1)
(HL1-1)

training  79.3  77.8  80.4  76.7  58.1
validation  82.4  66.7 100.0  81.6  69.6
test  70.6  71.4  70.0  66.8  40.8
all  78.4  75.0  81.3  75.7  56.4

M2
(HL-1)
(HL1-10)

training  87.8  91.7  84.8  87.0  75.9
validation  94.1 100.0  90.0  93.5  88.7
test  70.6  88.9  50.0  77.0  42.6
all  86.2  92.3  81.3  85.9  73.2

M3
(HL-1)
(HL1-11)

training  93.9  91.9  95.6  93.2  87.7
validation  82.4  71.4  90.0  77.2  63.2
test  82.4  75.0  88.9  80.2  64.8
all  90.5  86.5  93.8  89.1  80.8

M4
(HL-1)
(HL1-100)

training 100.0 100.0 100.0 100.0 100.0
validation  94.1  80.0 100.0  89.4  85.9
test  82.4  85.7  80.0  80.2  64.8
all  96.6  96.2  96.9  96.2  93.0

M5
(HL-2)
(HL1-11)
(HL2-100)

training 100.0 100.0 100.0 100.0 100.0
validation  94.1  85.7 100.0  92.6  88.3
test  94.1 100.0  88.9  94.3  88.9
all  98.3  98.1  98.4  98.1  96.5
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sion matrix of the results of M5, the most successful model, 
is shown in Figure 2.

The M5 correctly identified 114 out of 116 samples. By ap-
plying Equations 3-7 to the confusion matrices obtained 

FiGure 2. Pattern recognition network confusion matrix for the best results from the network’s testing (A), training (B), validation 
(C), and all (D) data.

FiGure 3. (A) Best validation and (B) regression performance of the model 5 for the presence of breast cancer.
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using M1, M2, M3, M4, and M5, we calculated sensitivity, 
specificity, accuracy, MCC, and FM index values (Table 3).

The M1 yielded the worst results, with accuracy, sensitivity, 
specificity, FM index, and MCC of 70.6%, 71.4%, 70%, and 
66.8%, respectively. The MCC calculated for the test confu-
sion matrix was 40.8%.

The best results were obtained with the M5 model, which 
had 11-100 neurons in the hidden layer 1 and hidden lay-
er 2, respectively. The accuracy, sensitivity, specificity, MCC, 
and FM index from the test confusion matrices were 94.1%, 
100%, 88.9%, 94.3%, and 88.9%, respectively, which shows 
the effectiveness of this model.

In the neural network training, the epoch and validation 
checks numbers were 1000 and 6, respectively. The ep-
och vs MSE variations that occurred during the training 

phase are shown in Figure 3A. The MSE decreased with 
the increase in the number of epochs for all training, 
validation, and test data. The trend slope was decreased 
when a fixed error started to persist for the network mod-
el. The best validation performance in terms of MSE was 
0.058824 at epoch 32. The R2 value, which shows the rela-
tionship between the actual data and the data predicted 
by the PRN, was approximately 0.941 (Figure 3B). This re-
sult shows the high simulation capability of the model 
used.

The classification results also corresponded with the area 
under the curve (AUC) for each confusion matrix of the M5 
model (Figure 4).

To compare the results of this study with two studies 
(10,20) using the same data, 9 (including age, HOMA, lep-
tin, adiponectin, body mass index, insulin, glucose, resistin, 

FiGure 4. Pattern recognition network’s corresponding area under the curve (auC) for the best results from the network’s (A) train-
ing; (B) validation; (C) test; and (D) all data. roC: receiver operating characteristic.
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and MCP-1) and 4 features (resistin, glucose, age, and BMI) 
were entered in the M5 instead of 5 features (Table 4).

diSCuSSion

In this study, the results obtained by M5 with 5 features 
(age, BMI, glucose, resistin, and adiponectin) showed that 
pattern recognition networks can be effectively used for 
breast cancer prediction.

Compared with the previous studies, the results of the M5 
model in this study may be considered reliable and highly 
accurate. Sarıtaş and Yaşar (20) compared the performance 
results of ANN and naïve Bayes classifiers applied to data 
with the same 9 clinical features. The data samples were se-
lected so that 65% were used for training, 25% for testing, 
and 10% for validation. Breast cancer was classified with an 
accuracy of 86.95% when ANN were used and with an ac-
curacy of 83.54% when naïve Bayes algorithms were used. 
In the current study, while the classification accuracy for 
the M5-9 model with 9 features was 70.6%, the accuracy of 
the M5 model with 5 features was 94.1%.

Patrício et al (10) predicted the presence of breast cancer 
in women based on 4 features (age, resistin, BMI, and glu-
cose) in the same 9-feature data set, with a specificity rang-
ing from 85% to 90% and a sensitivity ranging from 82% to 
88%. In the current study, while the specificity and sensitiv-
ity values for the M5-4 model with 4 features were 87.5% 
and 77.8%, respectively, for the M5 model with 5 features 
they were 88.9% and 100%.

Gündoğdu (13) used KNN and SVM algorithms with 5 fea-
tures (age, BMI, glucose, resistin, and adiponectin) as in-
puts for the prediction of breast cancer. This model had 
85.3% accuracy, 80.8% sensitivity, and 89.1% specificity. 
The results of the M5 model in this study showed that the 
predictions of the PRN were better than the predictions of 

KNN and SVM methods, with 94.1% accuracy, 100% of sen-
sitivity, and 88.9% of specificity.

This study proposed a model for predicting the presence 
of breast cancer by using the PRN with relevant optimal 
attributes. The best classification was obtained when age, 
BMI, glucose, resistin, and adiponectin were applied as net-
work inputs. These results could be used to aid physicians 
in the detection of breast cancer. Although it is a matter 
of discussion whether breast cancer estimation can be 
used instead of imaging techniques, detecting the disease 
with routine blood analysis parameters and anthropomet-
ric data may cause less stress, anxiety, and pain for the pa-
tients.
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